
yEd UML Documentation
Release 0.1

Ruslan Baratov

Sep 27, 2017





Setup

1 Setup 3

2 Loading yEd palettes 9

3 Comment (note symbol) 17

4 Activity Diagram 19

5 Class Diagram 27

i



ii



yEd UML Documentation, Release 0.1

Examples of various types of UML diagrams created using yEd graph editor.

Setup 1



yEd UML Documentation, Release 0.1

2 Setup



CHAPTER 1

Setup

Installation

yEd can be downloaded and installed from official site:

• Downloads

Line intersection

By default line intersection is not marked:

3

http://www.yworks.com/downloads#yEd


yEd UML Documentation, Release 0.1

To change it go to File -> Preferences:

4 Chapter 1. Setup



yEd UML Documentation, Release 0.1

Choose Display:

1.2. Line intersection 5



yEd UML Documentation, Release 0.1

Change Bridge Style:

6 Chapter 1. Setup



yEd UML Documentation, Release 0.1

Result:

1.2. Line intersection 7



yEd UML Documentation, Release 0.1

8 Chapter 1. Setup



CHAPTER 2

Loading yEd palettes

Download

To load palettes download/clone this repo with palettes directory:

> git clone https://github.com/ruslo/yed-uml
> cd yed-uml
[yed-uml]> ls -d palettes
palettes/

Loading into yEd

Follow these steps for each palette to load them all into yEd.

Go to Edit -> Manage Palette...:

9



yEd UML Documentation, Release 0.1

Click Import Section:

10 Chapter 2. Loading yEd palettes



yEd UML Documentation, Release 0.1

Find palettes directory and load file:

2.2. Loading into yEd 11



yEd UML Documentation, Release 0.1

Move palette up so it will be easier to access it:

12 Chapter 2. Loading yEd palettes



yEd UML Documentation, Release 0.1

After palette reach the top click Close:

2.2. Loading into yEd 13



yEd UML Documentation, Release 0.1

New palette is loaded and can be used:

14 Chapter 2. Loading yEd palettes



yEd UML Documentation, Release 0.1

2.2. Loading into yEd 15



yEd UML Documentation, Release 0.1

16 Chapter 2. Loading yEd palettes



CHAPTER 3

Comment (note symbol)

7.2.4 Notation

A Comment is shown as a rectangle with the upper right corner bent (this is also known as a “note
symbol”). The rectangle contains the body of the Comment. The connection to each annotatedElement is
shown by a separate dashed line. The dashed line connecting the note symbol to the annotatedElement(s)
may be suppressed if it is clear from the context, or not important in this diagram.

17



yEd UML Documentation, Release 0.1

18 Chapter 3. Comment (note symbol)



CHAPTER 4

Activity Diagram

Actions

15.2.4 Notation

The notations for ActivityNodes are illustrated below. This notation is discussed in more detail in the following sub
clauses (and in Clause 16 for Actions).

16.2.4.1 Actions

Actions are notated as round-cornered rectangles, as shown in Figure 16.2. The name of the action or other description
of it may appear in the symbol.

Activity Edge

15.2.4 Notation

An ActivityEdge (whether a ControlFlow or ObjectFlow) is notated by an open arrowhead line connecting two Activ-
ityNodes. If the edge has a name, it is notated near the arrow. Guards are shown as text in square brackets near tail of
the line.

19



yEd UML Documentation, Release 0.1

Decision Nodes

15.3.4.3 Merge Nodes and Decision Nodes

The notation for both MergeNodes and DecisionNodes is a diamond-shaped symbol

15.3.4.3 Merge Nodes and Decision Nodes

A decisionInput on a DecisionNode is notated in a note symbol attached to the DecisionNode symbol, with the keyword
«decisionInput», as shown in Figure 15.33

20 Chapter 4. Activity Diagram



yEd UML Documentation, Release 0.1

4.3. Decision Nodes 21



yEd UML Documentation, Release 0.1

Initial Node

15.3.4.1 Initial and Final Nodes

InitialNodes are notated as a solid circle

Final Nodes

15.3.4.1 Initial and Final Nodes

ActivityFinalNodes are notated as a solid circle within a hollow circle, as shown in Figure 15.28. This can be thought
of as a goal notated as “bull’s eye,” or target.

22 Chapter 4. Activity Diagram



yEd UML Documentation, Release 0.1

Note: It’s not possible to create this as one element so it’s separated to “Final Node (internal)” and “Final Node
(external).

Object Nodes

15.4.4.1 Object Nodes

ObjectNodes are notated as rectangles

4.6. Object Nodes 23



yEd UML Documentation, Release 0.1

Example

24 Chapter 4. Activity Diagram



yEd UML Documentation, Release 0.1

Links

See also:

UML Activity Diagrams: Reference

4.8. Links 25

https://msdn.microsoft.com/en-us/library/dd409360.aspx


yEd UML Documentation, Release 0.1

26 Chapter 4. Activity Diagram



CHAPTER 5

Class Diagram

Class

9.2.4.1 Classifiers

The default notation for a Classifier is a solid-outline rectangle containing the Classifier’s name, and with compart-
ments separated by horizontal lines below the name. The name of the Classifier should be centered in boldface. For
those languages that distinguish between uppercase and lowercase characters, Classifier names should begin with an
uppercase character.

class Foo { /* ... */ };

class A {
public:
int foo;
bool boo;

float bar();
double baz(int val, bool cond);

};

27



yEd UML Documentation, Release 0.1

10.4.4 Notation

An Interface may be designated using the default notation for Classifier (see 9.2.4) with the keyword «interface».

9.2.4.1 Classifiers

If the default notation is used for a Classifier, a keyword corresponding to the metaclass of the Classifier shall be shown
in guillemets above the name.

class Foo {
public:
virtual bool foo();

};

9.2.4.1 Classifiers

The name of an abstract Classifier is shown in italics, where permitted by the font in use. Alternatively or in addition,
an abstract Classifier may be shown using the textual annotation {abstract} after or below its name .

class A {
public:
virtual void boo(int x) =0;

};

28 Chapter 5. Class Diagram



yEd UML Documentation, Release 0.1

9.2.4.1 Classifiers

Any compartment which contains notation for Features may show those Features grouped under the literals public,
private and protected, representing their visibility . The visibility literals are left-justified in the compartment with
the Features’ notation appearing indented beneath them. The groups may appear in any order. Visibility grouping is
optional: a conforming tool need not support it.

class A {
public:
int boo;

private:
bool foo;

public:
void bar();

private:
void baz();

};

Generalization

9.2.4.2 Other elements

5.2. Generalization 29



yEd UML Documentation, Release 0.1

A Generalization is shown as a line with a hollow triangle as an arrowhead between the symbols representing the
involved Classifiers. The arrowhead points to the symbol representing the general Classifier.

class Foo { /* ... */ };
class Boo { /* ... */ };

class Bar: public Foo, public Boo { /* ... */ };

Usage

7.7.4 Notation

A Dependency is shown as a dashed arrow between two model Elements. The model Element at the tail of the arrow
(the client) depends on the model Element at the arrowhead (the supplier). The arrow may be labeled with an optional
keyword or stereotype and an optional name (see Figure 7.18).

7.7.4 Notation

A Usage is shown as a Dependency with a «use» keyword attached to it.

class Foo {
public:
void foo();

};

class Boo {
public:
void boo(Foo& x) {
return x.foo();

}
};

30 Chapter 5. Class Diagram



yEd UML Documentation, Release 0.1

Factory

class Foo { /* ... */ };

class Boo {
public:
Foo* make_foo() {
return new Foo();

}
};

See also:

Abstract Factory Design Pattern

Realization

7.7.4 Notation

A Realization is shown as a dashed line with a triangular arrowhead at the end that corresponds to the realized Element.

class Foo {
public:
virtual void foo() =0;

5.4. Factory 31

http://www.uml-diagrams.org/design-pattern-abstract-factory-uml-class-diagram-example.html


yEd UML Documentation, Release 0.1

};

class Boo: public Foo {
public:
virtual void foo() { /* ... */ }

};

Composition

11.5.4 Notation

Any Association may be drawn as a diamond (larger than a terminator on a line) with a solid line for each Association
memberEnd connecting the diamond to the Classifier that is the end’s type.

11.5.4 Notation

An Association end is the connection between the line depicting an Association and the icon (often a box) depicting
the connected Classifier. A name string may be placed near the end of the line to show the name of the Association
end.

11.5.4 Notation

A binary Association may have one end with aggregation = AggregationKind::shared or aggregation = Aggrega-
tionKind::composite. When one end has aggregation = AggregationKind::shared a hollow diamond is added as a termi-
nal adornment at the end of the Association line opposite the end marked with aggregation = AggregationKind::shared.
The diamond shall be noticeably smaller than the diamond notation for Associations. An Association with aggregation
= AggregationKind::composite likewise has a diamond at the corresponding end, but differs in having the diamond
filled in.

9.5.3 Semantics

Indicates that the Property is aggregated compositely, i.e., the composite object has responsibility for the existence and
storage of the composed objects

32 Chapter 5. Class Diagram



yEd UML Documentation, Release 0.1

9.5.3 Semantics

Composite aggregation is a strong form of aggregation that requires a part object be included in at most one composite
object at a time. If a composite object is deleted, all of its part instances that are objects are deleted with it.

11.5.3.1 Associations

The multiplicities at the other ends of the association determine the number of instances in each partition. So, for
example, 0..1 means there is at most one instance per qualifier value.

11.5.4 Notation

An Association end is the connection between the line depicting an Association and the icon (often a box) depicting
the connected Classifier. A name string may be placed near the end of the line to show the name of the Association
end. The name is optional and suppressible.

class A { /* ... */ };

class B {
public:
int x;
bool y;

A a[4];
};

See also:

UML Association Reference

5.6. Composition 33

http://www.uml-diagrams.org/association-reference.html


yEd UML Documentation, Release 0.1

Aggregation

class B;

class A {
public:
A(B& b): b_(b) {}

private:
B& b_;

};

class B {
public:
void add(A& a) {
a_.push_back(&a);

}

private:
std::vector<A*> a_;

};

Note: Tip sections with headers like 14.3.3.1 StateMachineExtension refers to UML 2.5 standard.

34 Chapter 5. Class Diagram

http://www.omg.org/spec/UML/2.5/

	Setup
	Loading yEd palettes
	Comment (note symbol)
	Activity Diagram
	Class Diagram

